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ABSTRACT

This study updates a body of literature that aims to separate atmospheric disturbances into standing and

traveling zonal wave components. Classical wavenumber–frequency analysis decomposes longitude- and

time-dependent signals into contributions from distinct spatial and temporal scales. Here, an additional de-

composition of the spectrum into standing and traveling components is described. Previous methods de-

compose the power spectrum into standing and traveling parts with no explicit allowance for covariance

between the two. This study provides a simple method to calculate the variance of each of these components

and the covariance between them. It is shown that this covariance is typically a significant portion of the

variance of the total signal. The approach also preserves phase information and allows for the reconstruction

of the real-space standing and traveling components.

The technique is applied to reanalysis wintertime geopotential height anomalies in the Northern Hemi-

sphere in order to investigate planetary wave interference effects in stratosphere–troposphere coupling. The

results show that for planetary waves 1–3, standing waves explain the largest portion of the variance at low

frequencies. An exception is for wave 1 in the high-latitude troposphere, where there is a strong westward-

traveling wave. Furthermore, the antinodes of the standing waves have preferred longitudes that tend to align

with the extremes of the climatological wave, suggesting that standing waves contribute to a linear in-

terference effect that has been shown to be an important part of stratosphere–troposphere interactions.

1. Introduction

Wavenumber–frequency spectral analysis is often

used to decompose large-scale atmospheric flows into

spatial and temporal Fourier harmonics (e.g., Hayashi

1971;Wheeler andKiladis 1999), which can then be used

to compute cross-spectra for quantities such as meridi-

onal heat or momentum flux (Randel and Held 1991).

Here we consider the problem of further decomposing

each Fourier harmonic into standing and traveling

components. In this work a standing wave is defined to

be like a standing wave on a string with fixed ends—that

is, of the form cos(kl) cos(vt). It is the sum of two op-

positely traveling waves of equal amplitude and phase

speed: 2cos (kl) cos(vt)5 cos(kl2 vt)1 cos(kl1 vt).

Note that in some studies, ‘‘standing wave’’ is used to

refer to the climatological zonal asymmetry; we will

refer to this latter quantity simply as the climatological

wave. Estimation of standing and traveling wave power

spectra has been described previously (Hayashi 1973,

1977, 1979; Pratt 1976). However, themethods proposed

by Hayashi and Pratt both suffer from the same issue:

they exclusively decompose the power spectrum into

standing and traveling parts with no possibility for any

covariance between these wave structures. We will show

that although such decompositions are not unique, typ-

ical prescriptions yield standing waves that are not

orthogonal to the traveling waves and hence include

significant covariance.

In this report, we propose a simple decomposition of

the wavenumber–frequency spectrum into standing and

traveling parts, calculate analytic expressions for the

variance of each component and their covariance, and

show how the decomposition can be used to reconstruct

standing and traveling wave fields. While the techniques

that we describe are quite general, we were motivated to

carry out this analysis by particular issues related to
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wave-driven stratosphere–troposphere coupling in the

Northern Hemisphere extratropics (Baldwin and

Dunkerton 2001; Garfinkel et al. 2010; Shaw et al. 2010;

Smith and Kushner 2012). Thus, we apply the tech-

nique to geopotential height anomalies in the Northern

Hemisphere winter. Example case studies of interest

are shown in Fig. 1. In the left column in Fig. 1 we show

Hovmöller plots of the wave-1 geopotential height
anomalies at 608N and 100hPa for the winter of 1979/80,

which consisted of persistent westward-propagatingwave-1

anomalies, and for the winter of 1990/91, which was dom-

inated by a large-amplitude standing wave event. Our in-

terest is in how these different wave anomalies interfere

with the background climatology and, thus, drive fluctua-

tions in the portion of the vertical flux of wave activity—as

measured by themeridional eddy heat flux—that is linearly

coherent with the background climatological wave (Nishii

et al. 2009). We denote this quantity ‘‘LIN’’ (Smith and

Kushner 2012). The second column in Fig. 1 shows the

wave-1 component of LIN for each of these winter sea-

sons. The positive and negative periods of LIN corre-

spond towave-1 anomalies being, respectively, in and out

of phase with the wave-1 background climatology (the

longitudes of the maximum and minimum of the daily

wave-1 climatology are indicated by the solid and dashed

black lines). A standing–traveling decomposition will

allow us to determine whether fluctuations in LIN are

being driven primarily by traveling waves of consistent

amplitude propagating in and out of phase with the

background or by standing waves fixed in space.

Computations of standing and traveling wave de-

compositions of the extratropical circulation have to

FIG. 1. Wave-1 Z*0 and LIN heat flux at 608N and 100 hPa for two NDJFM seasons: (top) 1979/80 and (bottom)

1990/91. (left)–(right) Wave-1 Z*0, wave-1 component of LIN heat flux, wave-1 Z*0
St
, and wave-1 Z*0

Tr
. The contour

levels for all the Hovmöller diagrams are 6(0, 100, 200, 300, 400, 500)m, where the reds are positive and blues are

negative. The solid and dashed black lines on the farthest left panels show the daily position of the maximum and

minimum of the wave 1 of Zc*. Note that for each row the two right panels sum to the leftmost panel.
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a large extent relied on the methods of Hayashi (1977,

1979) and Pratt (1976). These methods were summa-

rized in the textbook by von Storch and Zwiers (1999).

For example, Fraedrich and Böttger (1978) decompose

the spectrum of geopotential heights at 500 hPa and

508N into standing and traveling parts using a method

that combines the techniques of Pratt and Hayashi.

Their focus is on higher wavenumber and frequency

disturbances, where the authors observe several distinct

peaks in the spectrum. The authors suggest that differing

types of baroclinic instability—associated with dry ver-

sus moist static stability—could be responsible for these

separate peaks. Speth and Madden (1983), using the

Hayashi (1977) method, highlight and investigate in

more detail the presence of a high-latitude 15–30-day

period westward-traveling wave-1 feature. Using the

meridional and vertical structure of the feature’s am-

plitude as evidence, the authors attribute it to a mani-

festation of the theoretically predicted 16-day wave

(Haurwitz 1940; Madden 1979). Other studies have used

Hayashi and Pratt’s methods to determine whether the

Madden–Julian oscillation is primarily a standing or prop-

agating pattern (Zhang and Hendon 1997); to analyze the

atmospheric variability in general circulation models

and its dependence on the El Niño–SouthernOscillation

(May 1999); and to quantify midlatitude tropospheric

variability, and possible changes to it under global warm-

ing scenarios, in the Coupled Model Intercomparison

Project phase 3 (Lucarini et al. 2007) and phase 5 (Di

Biagio et al. 2014) ensembles.

These examples show the potentially wide applica-

bility of standing–traveling wave decompositions. We

will show that the previously used decomposition

methods, however, do not explicitly account for the lack

of uniqueness of these decompositions or for the non-

orthogonality of the resulting wave fields. These short-

comings and their implications will be addressed in this

report, which is structured as follows. Section 2 will

outline the proposed standing–traveling decomposition,

describe some simple analytical results, outline pre-

viously defined techniques, and describe the data to

which we apply the analysis technique. Section 3 will

show the results of applying the method to Northern

Hemisphere geopotential height anomalies, including

a detailed comparison with previous approaches and an

overview of the climatological wavenumber–frequency

spectra in the extratropics. To investigate planetary

wave interference effects, we will compare the structure

of the standing waves and the climatological wave field.

Last, we will compute the vertical and time-lagged co-

herences of the standing and traveling waves at selected

Northern Hemisphere extratropical locations using

correlation-coherence analysis (Randel 1987). Section 4

will summarize the results and discuss implications for

stratosphere–troposphere coupling.

2. Theory and data

a. Standing–traveling wave decomposition

This section describes our proposed decomposition of

the wavenumber–frequency spectrum into standing and

traveling parts. To begin, given some longitude- and

time-dependent variable q(l, t), with daily frequency

over a period of time of length T days and defined at N

equally spaced points in longitude, the discrete 2D

Fourier transform is computed as

q̂k,j 5 �
N21

n50
�
T21

t50

e2ikl
n
2iv

j
tq(ln, t) , (1)

where ln 5 2pn/N andvj 5 2pj/T, defined for k5 0, . . . ,

N 2 1 (k is the planetary wavenumber) and j 5 0, . . . ,

T 2 1 ( j is an integer index that corresponds to the

frequency vj). For simplicity, q(l, t) is assumed to have

zero zonal and time means, and N and T are assumed to

be odd. Given that q(l, t) is real, as shown in the ap-

pendix, one can write the inverse transform as

q(l, t)5
2

NT
�
N

2

k51
�
T

2

j51

qk,6j(l, t) , (2)

where N2 5 (N 2 1)/2, T2 5 (T 2 1)/2, and

qk,6j(l, t)5Qk,j cos(kl1vjt1fk,j)

1Qk,2j cos(kl2vjt1fk,2j) , (3)

where we have used v2j 5 2vj and where Qk,j and fk,j

are the amplitude and phase of q̂k,j. That is, q̂k,j 5Qk,je
ifk,j ,

with Qk,j real and positive and 2p , fk,j # p.

We now decompose the amplitudes Qk,j in Eq. (3) in

order to express q(l, t) as a combination of standing and

traveling waves at each wavenumber and frequency.

Using the fact that a pure standing wave consists of two

traveling waves of equal amplitude and phase speed

moving in opposite directions, we define standing and

traveling amplitudes as

QSt
k,j 5min(Qk,j,Qk,2j) and (4a)

QTr
k,j 5Qk,j 2QSt

k,j (4b)

and note that these definitions imply that QSt
k,j 5QSt

k,2j

and that either QTr
k,j 5 0 or QTr

k,2j 5 0. Furthermore, we

note that QSt
k,j and QTr

k,j are real and nonnegative. The
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phases of the standing and traveling components are set

to be equal to the original Fourier coefficient phases;

that is, fSt
k,j 5fTr

k,j 5fk,j. A phasor representation in the

complex plane of this decomposition of two Fourier co-

efficients q̂k,6j into standing and traveling components is

given in Figs. 2a and 2b. Alternative decompositions

shown in Figs. 2c and 2d will be described in section 2b.

Note that although we define the standing waves am-

plitude for both positive and negative frequencies,

since our definition ensures the standing wave power is

symmetric with respect to frequency, we could equiva-

lently consider a ‘‘one sided’’ spectrum for the standing

wave, as in some previous works (e.g., Fraedrich and

Böttger 1978).
One of the main uses of the Fourier transform is to

decompose the total variance of a signal into contribu-

tions from different wavenumbers and frequencies.

From Parseval’s theorem, written here using the same

assumptions on q(l, t) as above, we have

�
N21

n50
�
T21

t50

[q(ln, t)]
25

2

NT
�
N

2

k51
�
T
2

j52T
2

(Qk, j)
2 . (5)

Furthermore, from Eq. (4b), we have

(Qk, j)
2 5 (QSt

k, j)
21 (QTr

k, j)
21 2QSt

k, jQ
Tr
k, j . (6)

Thus, the variance of the signal q(l, t) is decomposed at

each wavenumber and frequency into a standing part,

a traveling part, and a term that represents the co-

variance between the two parts. Note that sinceQSt
k,j and

QTr
k,j are greater than or equal to zero, the covariance

term is always nonnegative. This is to be expected: since

in the definition of the standing and traveling parts of the

signal we maintain the same phases fk,j, the traveling

wave will always positively correlate with one of the

components of the standing wave.

In our decomposition the standing waves have an

easily defined structure. At each wavenumber and pair

of frequencies, the standing wave can be written as

qStk,6j(l, t)5
2

NT
QSt

k, j cos(kl1vjt1fk, j)

1
2

NT
QSt

k,2j cos(kl2vjt1fk,2j)

5
4

NT
QSt

k, j cos(kl1fk, j) cos(vjt1Dfk, j), (7)

where

fk,j5
1

2
(fk,j 1fk,2j), Dfk,j 5

1

2
(fk,j 2fk,2j) . (8)

Thus, the standing wave corresponding to the

wavenumber–frequency pair (k, v6j) will have its

crests and troughs at longitudes of l5 (1/k)(pm2fk,j),

where m is an integer. It is shown in the appendix that

fk,j gives the same result for the positions of the anti-

nodes as the formula given by Hayashi [e.g., Eq. (4.5) in

Hayashi (1977)].

We are also interested in examining the typical be-

havior of standing and traveling waves consisting of

more than one frequency across one or more seasons.

To this end, we compute the variance over time of

qk(l, t)5 (2/NT)�T2

j51qk,6j(l, t). As demonstrated in

the appendix, using the orthogonality of the cosine basis

functions, one can show that

FIG. 2. Different possible decompositions of two Fourier coefficients into standing and traveling components. (a) Two arbitrary Fourier

coefficients [see Eq. (1)] corresponding to the same wavenumber and opposite frequencies, plotted on the complex plane. (b) De-

composition of these two coefficients into standing (red) and traveling (blue) parts as implemented in this paper, following Eq. (4). (c) An

alternate decomposition in which there are traveling waves propagating in both directions. (d) An alternate decomposition in which the

phases of the standing and traveling components are allowed to differ from the phase of the total Fourier coefficient. In all cases, the

standing wave amplitude is equal for 1j and 2j.
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var(qk)(l)5
1

T
�
T21

t50

[qk(l, t)]
2

5
2

N2T2 �
T

2

j52T
2

[Q2
k,j 1 2Qk,jQk,2j cos

2(kl1fk,j)2Qk,jQk,2j] , (9)

where fk,j was defined in Eq. (8). If the signal qk(l, t) is

the sum of pure standing waves (i.e., Qk,j 5 Qk,2j) then

Eq. (9) simplifies to

var(qStk )(l)5
4

N2T2 �
T
2

j52T
2

Q2
k, j cos

2(kl1fk, j) . (10)

On the other hand, if our signal is the sum of pure trav-

eling waves (i.e., either Qk,j 5 0 or Qk,2j 5 0 for every j;

i.e., Qk,jQk,2j 5 0), then Eq. (9) simplifies to

var(qTrk )(l)5
2

N2T2 �
T
2

j52T
2

Q2
k, j . (11)

b. Alternate decompositions

Because the standing and traveling waves at the same

wavenumber and frequency are not orthogonal, the de-

composition defined inEq. (4) is not unique. For example,

one could assign less amplitude to the standing wave and

have traveling waves moving in both directions at each

absolute frequency, as in Hayashi (1977). An example of

this is shown in Fig. 2c. Furthermore, if one allows for the

phases of the standing and traveling components to be

different, then this allows another set of possibilities for

the decomposition, an example of which is shown in

Fig. 2d. Nevertheless, we argue that our choice defined

in Eq. (4) is a natural decomposition to work with for

a number of reasons. First, we reject the possibility of

having traveling waves moving in both directions at the

same wavenumber and phase speed, as in Fig. 2c, since

these will just add up to an additional standing wave at

this frequency. Second, we choose to keep the same

phases for the standing and traveling components, be-

cause this is the simplest choice and because it ensures

that the standing and traveling parts of the signal each

have the maximum correlation with the total signal.

Note that if we allow the phases of the standing and

traveling components to vary, as in Fig. 2d, the covariance

can also be negative or zero. In particular, assuming only

that q̂k,j 5 q̂Stk,j 1 q̂Trk,j, we can generalize Eq. (6) to

(Qk, j)
25 (QSt

k, j)
21 (QTr

k, j)
21 2QSt

k, jQ
Tr
k, j cos(f

St
k, j 2fTr

k, j) .

(12)

When fSt
k,j 5fTr

k,j as before, we recover Eq. (6) and the

covariance is strictly positive. However, it is also possible to

forcefSt
k,j 2fTr

k,j 5 6p/2 (one of these cases is illustrated in

Fig. 2d) in which case the covariance will be zero. Never-

theless, the fSt
k,j 5fTr

k,j case is the most intuitive de-

composition because it maximizes the correlation between

eachof the standing and traveling components and the total

signal. This follows from the fact that the Fourier co-

efficients for the standing and traveling waves are parallel

to the total coefficient in the complex plane (as in Fig. 2b).

As far as we are aware, all standing–traveling de-

compositions discussed in the literature (Hayashi 1973,

1977, 1979; Pratt 1976) do not explicitly account for the

covariance term between standing and traveling waves.

The authors generally take it as an assumption that the

standing and traveling waves will be independent, al-

though they do recognize that this is not always actually

the case. In particular, they require that, written in our

notation, either (Qk,j)
2 5 (QSt

k,j)
2 1 (QTr

k,j)
2 1 noise (Pratt

1976) or (Qk,j)
2 5 (QSt

k,j)
2 1 (QTr

k,j)
2 (Hayashi 1977) with-

out any explicit representation of covariance between the

standing and traveling parts of the signal.

We thus identify two distinct advances arising from our

technique. First, we can precisely account for and calcu-

late the often significant contribution from the joint var-

iability of standing and traveling waves. Second, it is also

straightforward to reconstruct the real-space standing

and traveling parts of the signal,1 which is something that

is not simple to do with the other techniques.

c. Other techniques

Some previous techniques for computing the

wavenumber–frequency spectrum, starting with Hayashi

(1971), take a somewhat different approach thanwhat we

have described above. They begin by computing a spatial

Fourier transform of q(l, t) at each time step and defining

ck(t) and sk(t) as the time series for the cosine and sine

coefficients at wavenumber k (again, we are assuming the

zonal mean of q is zero):

q(l, t)5 �
N

k51

[ck(t) cos(kl)1 sk(t) sin(kl)] . (13)

1To do this, simply use the inverse transform given in Eqs. (2)

and (3) with the standing or traveling amplitudes, QSt
k,j or Q

Tr
k,j, in-

stead of the total amplitude Qk,j.
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The wavenumber–frequency spectrum is then defined as

[see also von Storch and Zwiers (1999)]

Pk,v(q)5
Pv(ck)1Pv(sk)

2
1Qv(ck, sk) , (14)

where Pv(ck) and Pv(sk) are the power spectra of ck(t)

and sk(t), respectively, and Qv(ck, sk) is the quadrature

spectrum (i.e., imaginary part of the cross-spectrum)

between the two. Note that, as shown by Tsay (1974),

Pk,v(q) is equal to the 2D Fourier amplitudes squared

jq̂k,vj
j2 where q̂k,vj

was defined in Eq. (1).

Pratt (1976) and Hayashi (1977) define the standing

wave variance as

PSt
k,v(q)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
[Pv(ck)2Pv(sk)]

2 1K2
v(ck, sk)

r
, (15)

whereKv(ck, sk) is the cospectrumbetween ck(t) and sk(t).

Pratt and Hayashi differ in how they define the prop-

agating part of the variance. Pratt defines the traveling

variance as the difference between the eastward and

westward components, or,

PTr
k,v(q)5 2jQv(ck, sk)j . (16)

The direction of propagation is defined by whether Pk,v

or Pk,2v is greater. By Pratt’s definition, there is no

guarantee that the standing and propagating compo-

nents of the variance add up to the total wavenumber–

frequency spectrum. Hayashi, on the other hand, simply

defines the propagating variance as the total wavenumber–

frequency spectrum minus the standing portion [e.g.,

Eq. (5.9) in Hayashi (1977)]. However, this can lead to

negative powers for the propagating variance, since the

standing wave variance as defined in Eq. (15) can some-

times be larger than the total wavenumber–frequency

spectrum. Hayashi states this is most often an issue when

there is insufficient smoothing in the frequency domain.

There are twomain differences between our technique and

those of Pratt and Hayashi. First, we make no assumption

about the independence of the traveling and standing

waves, unlike the previous authors [e.g., see section 5 of

Hayashi (1977)]. Second, our decomposition is based on

the 2D Fourier coefficients themselves, as opposed to the

power, co-, and quadrature spectra as inEqs. (15) and (16).

We point out that there is some confusion in the liter-

ature about the Pratt andHayashi techniques. Von Storch

andZwiers (1999) correctly describe howPratt defines the

traveling wave variance [Eq. (16)] but incorrectly state

that Pratt defines the standing variance as the remainder

of the total. This is actually how Fraedrich and Böttger
(1978) explain the standing–traveling decomposition,

effectively mixing the Pratt and Hayashi techniques. In

section 3a, we will show results for the standing–traveling

decomposition as we define it, compared to the two

methods described in von Storch and Zwiers (1999).

d. Data and notation

We apply the analysis technique to 1979–2013 daily-

mean geopotential height from the Interim European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-Interim) (Dee et al. 2011). The data

are on a 1.58 3 1.58 latitude–longitude grid, on 37 ver-

tical levels ranging from 1000 to 1 hPa. We first remove

the zonal mean and the daily climatology, which is com-

puted by averaging each calendar day over all 35 years of

the dataset. We use a superscript asterisk to denote the

deviation from the zonal mean and a prime to denote the

climatological anomaly:

Z*5Z2 fZg, Z05Z2Zc , (17)

where fZg and Zc are the zonal and daily climatological

means of Z, respectively.

The spectral analysis is then applied to Z*0 separately
at each latitude and pressure level, on 151-day periods

starting 1 November of each year (thus, on non–leap

years, the period is from 1 November to 31 March, and

on leap years it is until 30 March). Note that before

applying the spectral analysis, we linearly detrend and

remove the time mean from the data over each winter

period, as in Wheeler and Kiladis (1999). This does not

have amajor impact on our results since we have already

removed the climatology. Although we compute the

spectral decompositions independently at each latitude

and pressure, in section 3f we will use the statistical

method of Randel (1987) to examine aspects of the wave

structures’ spatial and temporally lagged coherence.

Following Randel and Held (1991), we use a normal-

ized Gaussian spectral window of the form

W(vj2vj
0
)} e2[(j2j

0
)/Dj]2 (18)

to smooth the power spectra about the frequency vj0.

Here, W(vj 2vj0 ) is the weight given to the spectrum at

frequency vj for computing the smoothed power at vj0.

TheDj term is the width of the Gaussian window in terms

of the frequency index, which we take to be Dj5 1.5. We

are able to have a higher spectral resolution (smaller Dj)
than Randel and Held (1991) because we are averaging

our spectra over 34 winter seasons, as opposed to only 7.

Note that we apply the smoothing directly to each of

the three terms on the right-hand side of Eq. (6) after

having made the standing–traveling decomposition.

This is in contrast to Hayashi and Pratt, who compute
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smoothed spectra before making the standing and

traveling decomposition (Pratt 1976). For comparison,

we will also show some results in section 3a, where we

smooth the wavenumber–frequency spectrum before

making the decomposition into standing and traveling

parts. For our method, this is slightly more involved

because our decomposition is actually based on the

amplitudes, not the amplitudes squared. Thus, to make

the cleanest possible comparison withHayashi and Pratt

in section 3a, we square the amplitudes, then smooth,

and then take the square root to get smoothed ampli-

tudes, upon which we apply the decomposition into

standing and traveling components following Eq. (4).

Finally, we point out that we only smooth the spectra for

display (e.g., in Fig. 4) but not when reconstructing the

standing and traveling signals qSt(l, t) and qTr(l, t).

3. Results

a. Methods comparison

We begin by showing the various steps taken to com-

pute the final, smoothed, wavenumber–frequency spectra,

including the decomposition into standing and traveling

waves.We show all the steps for the wave-1 component of

Z*0 for the 1979/80 year, which was shown in Fig. 1. For

comparison, we will also show the standing–traveling de-

composition as computed by following the methods of

Hayashi and Pratt and by a version of our method that is

more consistent with the Hayashi and Pratt methods.

Figure 3a shows the normalized2 wave-1 component

of the raw wavenumber–frequency spectrum [i.e.,

(2/N2T)(Zk,j)
2]. Since we are showing results specific for

geopotential heights, we writeZk,j here instead ofQk,j as

in section 2. The zero-frequency component is plotted at

the center of the figure, with westward-moving waves

[positive vj in Eq. (2)] on the left side and eastward-

moving waves (negative vj) on the right side. The ab-

solute value of frequency increases moving away from

the center of the figure, and we omit the frequencies

higher than 0.1 day21 since they contain negligible

power for this year, latitude, and pressure level. Note

that the zero-frequency component has zero amplitude

because we have removed the time mean before com-

puting the spectrum. Furthermore, the westward power

is generally higher than the eastward power, indicative

of a prominent westward-traveling wave.

Next, the decomposition into standing and traveling

components is made based on the Fourier amplitudes

(which are not shown) using Eq. (4). In Fig. 3b, we replot

the total amplitudes squared and also show the three

terms in Eq. (6): the standing variance (ZSt
k,j)

2 in red, the

traveling variance (ZTr
k,j)

2 in blue, and the covariance

between the two 2ZSt
k,jZ

Tr
k,j in green (the same normaliza-

tion as in Fig. 3a is used in all cases). There is substantial

westward-traveling wave variance between periods of

FIG. 3. Different versions of the wave-1 component of the

wavenumber–frequency spectrum of NDJFM 1979/80 Z*0 at 608N
and 100 hPa. (a) Unsmoothed wavenumber–frequency spectrum

normalized such that integrating over frequency will give the

wave-1 variance [i.e., we plot (2/N2T)Z2
k,j]. The number in the top-

right corner gives the maximum value achieved by the spectrum

over all frequencies (m2 day). (b) Decomposition of the un-

smoothed spectrum into standing (red), traveling (blue), and co-

variance (green) terms according to Eq. (6). (c) Spectra from

(b) smoothed with a Gaussian window, which is shown by the thin

cyan line [see Eq. (18); width is Dj 5 1.5]. (d) Decompositions

of the smoothed wavenumber–frequency spectrum into standing

(red) and traveling (blue) components according to Pratt (1976)

(dashed) and Hayashi (1977) (dotted). (e) Decomposition of the

smoothed wavenumber–frequency spectrum into standing, travel-

ing, and covariance components using our method [as opposed to

(c), here the smoothing is performed before the standing–traveling

decomposition; see discussion in section 2d]. For the smoothed

spectra, we only plot the well-resolved frequencies. Note that all

spectra are plotted on the same scale as indicated in (a).

2 The normalization is chosen such that summing the spectrum

over positive wavenumbers and integrating over all frequencies

will recover the total time–longitude variance of the original signal.
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15–30 days, while standing waves dominate at the lowest

frequencies. We also have the expected properties that

ZSt
k,j 5ZSt

k,2j and that eitherZTr
k,j 5 0 orZTr

k,2j 5 0. Next, we

smooth each of the terms individually, as discussed in

section 2d. The smoothed spectra, as well as theGaussian

window used to do the smoothing, are plotted in Fig. 3c.

We also compare with the methods described by von

Storch and Zwiers (1999), which are based on those in

Pratt (1976) and Hayashi (1977). However, as noted in

section 2c, the Pratt method described in von Storch and

Zwiers (1999) is actually a conflation of the true Pratt

and Hayashi methods. For the remainder of the paper,

when we discuss the ‘‘Pratt’’ method, we refer to the

method attributed to Pratt that is described in section

11.5.7 of von Storch and Zwiers (1999).

In Fig. 3d, the decompositions described by Pratt and

Hayashi are shown. The variance is exclusively decom-

posed into standing and traveling portions, without any

covariance. Furthermore, note that these authors sug-

gest computing a smoothed wavenumber–frequency

spectrum before making the decomposition into stand-

ing and traveling components. This is what has been

done in Fig. 3d, and so for comparison, in Fig. 3e we

show the results for our decomposition based on the

presmoothed total spectrum (see discussion in section

2d). Our method gives identical results for the standing

wave power as the Pratt method when consistent

smoothing is done, and the Hayashi standing wave power

is generally similar. However, both Pratt and Hayashi

attribute the remaining variance exclusively to the trav-

eling wave, whereas we assign it to both the traveling

wave and the covariance between the standing and trav-

eling waves. This leads to a major reduction in the vari-

ance attributed exclusively to the traveling wave in our

method. Also, note that Hayashi’s method gives a nega-

tive traveling wave power at some frequencies—a clearly

nonphysical result.

b. Reconstruction of standing and traveling wave
fields

Using Eqs. (2) and (3) with the decomposed ampli-

tudes QSt
k,j and QTr

k,j replacing the total amplitudes Qk,j,

one can reconstruct the standing and traveling parts of

the signal q(l, t). To accurately reconstruct the original

signal, it is necessary to use the unsmoothed amplitudes.

In the two right columns of Fig. 1, the wave-1 portions of

the standing and traveling signals are plotted for 608N
and 100 hPa for the 1979/80 and 1990/91 winters. As we

had expected from viewing the total wave-1 anomaly, the

1979/80 year contains a consistent westward-propagating

wave. However, the quantitative decomposition that we

make allows us to also recognize the significant contri-

bution of standing waves to the variability this year. For

the 1990/91 year, we see the expected result: the stand-

ing wave field looks very similar to the total field, while

the traveling wave field generally has small amplitudes.

Note that the standing and travelingwave reconstructions

are not ‘‘pure’’ standing or traveling waves because they

are the combination of a range of frequencies. As well,

since the method naturally focuses on explaining the

largest-variance features, in some cases it is possible for

the technique to generate somewhat spurious results in

the low-amplitude part of the signal. For example, in

Fig. 1, the standing part of the signal for mid-November–

December 1990 contains an eastward-propagating fea-

ture. Nevertheless, it is of much smaller amplitude than

the standing wave feature later in the season, which is

accurately captured.

c. Climatological spectra at 608N

The frequency spectra at 608N for three different

vertical levels and for planetary waves 1–3 are shown in

Fig. 4. Note that in Fig. 4 we do not have the property

that eitherQTr
k,j 5 0 orQTr

k,2j 5 0. This is because we have

averaged over multiple spectra, each corresponding to

one winter season. For somewavenumbers and levels, it is

common to have either westward- or eastward-traveling

waves depending on the winter, and so for the climato-

logical spectra one can have traveling wave contributions

in both directions at the same absolute frequency.

Figure 4 shows that standing waves explain the largest

portion of the variance of Z*0 at most wavenumbers and

especially for low frequencies at the given latitude and

pressure levels. An exception is for wave 1 and wave 2 at

500 hPa, and to a lesser extent 100 hPa, where there is

a substantial westward-traveling peak in the spectrum at

a period of approximately 25 days. This feature has been

identified before by Speth and Madden (1983) and others.

Aswell, in themidstratosphere there are eastward-traveling

wave-2 and wave-3 components, although wave 3 ex-

plains a very small portion of the variance here. Finally,

Fig. 4 also shows that the covariance term explains

a significant portion of the total variance, typically being

roughly similar to the variance explained by the travel-

ing component.

d. Frequency-integrated Northern Hemisphere
spectra

To better appreciate the contributions of standing and

traveling waves throughout the atmosphere, we in-

tegrate the individual spectra (the total, standing, trav-

eling, and covariance parts) over frequency to find the

climatological variance explained by each of these por-

tions for each wavenumber, at all latitudes and levels.

The total and standing spectra are integrated over all

frequencies, whereas the traveling and covariance parts
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are integrated separately over negative and positive

frequencies to isolate the eastward and westward com-

ponents. These quantities are shown for the Northern

Hemisphere in Fig. 5. We separately show the contri-

butions bywaves 1–4 and sum together the contributions

from waves 5–10. Note the logarithmic scale for the

contours: each contour represents a doubling of vari-

ance. Furthermore, in each row, the five right panels

summed together give the leftmost panel.

The most important points to take from Fig. 5 are the

following. As expected by the Charney–Drazin criteria,

the stratospheric anomalies are dominated by wave 1 and

wave 2 and, to a lesser extent, wave 3. In the stratosphere,

the standing waves typically explain about half the total

variance and the remaining variance is distributed

roughly equally between the four remaining categories

for wave 1, while for waves 2 and 3 there is more power in

the eastward-traveling and covariance parts than in the

westward parts. In the troposphere there is a largely dif-

ferent distribution of variance. In terms of wavenumber,

the maximum contribution depends on the latitude: at

very high latitudes (north of 758) wave 1makes the largest

contribution, while moving to lower latitudes, larger

wavenumbers tend to make relatively larger contribu-

tions. Furthermore, at very high latitudes standing waves

explain amajority of the variance ofwave 1, while between

608 and 808N there is a substantial westward-traveling

and covariance contribution. This was noted previously

in Fig. 4. Moving to higher wavenumbers, there is

generally a diminishing contribution from standing

waves and an increase in the variance explained by

eastward-propagating waves instead of westward-

propagating waves, as we expect from the simple b-plane

Rossby wave dispersion relation. For synoptic-scale dis-

turbances (waves 5–10), the majority of the variance is

explained by eastward-traveling waves in the midlatitudes,

as expected.

The westward and eastward covariance portions, in

the two right columns of Fig. 5, are generally similar in

structure and amplitude to the respective westward- and

eastward-traveling variances. We do not necessarily ex-

pect to find any independent information in the covari-

ance plot: by the construction of the standing–traveling

decomposition, the covariance between the two wave

structures at some wavenumber and frequency is entirely

determined by the amplitudes (or variances) of the in-

dividual standing and traveling parts [see Eq. (6)].

e. Relative structure of standing and climatological
wave

Having established the importance of standing waves

throughout the extratropical atmosphere, we now seek

to understand their zonal structure. In particular, we

wish to know whether the nodes and antinodes of these

standing waves have preferred longitudinal positions. If

so, and if the antinodes are in alignment with the max-

imum andminimum of the climatological wave, then the

standing waves will primarily be driving amplification

FIG. 4. The climatological wavenumber–frequency spectrum ofZ*0 for NDJFM at 608N and (left) 500, (middle) 100, and (right) 10 hPa.

Black is (Zk,j)
2, red is (ZSt

k,j)
2, blue is (ZTr

k,j)
2, and green is 2ZSt

k,jZ
Tr
k,j. Only the first three wavenumbers and periods to 6 days are shown.

Smoothing is as in Fig. 3c. All wavenumbers and levels are plotted using different scales, which are shown in the top-right corner of each

plot, indicating the maximum value (m2 day) reached by the total spectrum for that wavenumber and level. The spectra are normalized by

2/N2T so that integrating over frequency and summing over wavenumber will recover the total variance of the original signal.
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and attenuation of the climatological wave (instead of,

for example, a zonal shift of the climatological wave).

This would imply that the standing waves would be ef-

ficient drivers of the linear part of the vertical flux of

Rossby wave activity, denoted LIN in section 1 (Smith

and Kushner 2012).

Figure 6 shows the climatological time variance of Z*0
St

[seeEq. (10)] overNovember–March (NDJFM) forwave 1

and wave 2 at 500, 100, and 10hPa, as well as the clima-

tological wave-1 and wave-2 Zc* at these levels. The pres-

ence of zonal maxima of variance, especially in wave 1,

indicates that the standing waves do have preferred spatial

positions. This can be confirmed by plotting a histogram of

the phasefk,j [Eq. (8)] computed for all winter seasons and

for all frequencies with significant power (not shown).

Focusing on wave 1, Fig. 6 shows that the relationship

between the structure of the standing waves and the

climatological wave changes substantially at different

vertical levels. To clarify this point, we have plotted the

longitude of the zonal maxima of the standing wave

variance in the purple line and the longitude of the zonal

extrema of the climatological wave in the green line. We

can see that at 500 hPa, the maximum of the standing

wave variance is at a much more northerly latitude than

the maximum of the climatological wave and is zonally

positioned near the zero lines of the climatological wave.

On the other hand, at 100 hPa and to a lesser extent

10 hPa, the maximum of the standing wave variance is

closely aligned with the climatological wave. This sug-

gests that the wave-1 standing waves will be important

drivers of linear interference effects at these levels. Note

that although the wave-2 standing waves are weaker,

they also have preferred zonal positions and are typi-

cally well aligned with the climatological wave 2,

FIG. 5. The total variance integrated over frequency of various components of wavenumber–frequency spectra ofZ*0 for NDJFM in the

Northern Hemisphere. (left)–(right) The total power spectrum (positive and negative frequencies), the standing variance (positive and

negative frequencies), the traveling variance (westward) and the traveling variance (eastward), the standing–traveling covariance

(westward), and the standing–traveling covariance (eastward). (bottom)–(top) Wave 1, wave 2, wave 3, wave 4, and sum from wave 5 to

wave 10. The contour values are the same in all subplots: (8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096) 3 102m2.
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implying they are also expected to efficiently contribute

to linear interference effects.

f. Vertical wave structure and propagation

The spectra shown thus far are computed independently

at each pressure and latitude and so do not convey a sense

of the vertical or meridional structure of the waves.

Thus, although Fig. 6 shows a general westward tilt with

height of the crests and troughs of the standing wave-1,

we have no guarantee that individual standing waves

indeed span these vertical levels and have such a tilt. In

this section we further explore these structures and their

time dependence by employing the time-lagged wave

amplitude and phase correlation statistics of Randel

(1987); see also Shaw et al. (2010). This method com-

putes the spatially remote time-lagged coherence and

relative phase of a certain wavenumber.

The required information for the analysis is the time-

dependent spatial Fourier amplitudes and phases of

geopotential height, which we compute from our

already-calculated 2D Fourier coefficients ẑk,j. See sec-

tion 2 of Randel (1987) for details of the computation of

the correlation coherence and phase. We separately

calculate the correlations based on the total wave

anomaly ẑk,j, the standing part ẑStk,j, the westward-

traveling part (ẑTrk,j, j. 0), and the eastward-traveling

part (ẑTrk,j, j, 0). However, we will omit the eastward-

traveling wave coherence plot below because the

eastward-traveling signal is very weak in the tropo-

sphere (see Fig. 4) and we are computing the correla-

tions referenced to 500 hPa. We make the calculations

for both wave 1 and wave 2. Equations (19) and (20),

below, give the precise definitions of the standing and

westward-traveling parts of the wave anomaly for

a particular wavenumber k0.
Figure 7 shows a pressure-versus-lag cross section at

608N of the wave-1 and wave-2 correlation coherence

and phase with respect to 608N and 500 hPa for the total

wave anomaly (left column), the standing wave (middle

column), and westward-traveling wave (right column).

FIG. 6. Shading: variance over time of Z*0
St
, as in Eq. (10), computed individually for each winter season, then averaged over all years.

Contours: climatological wave Zc* averaged over NDJFM. (bottom) Wave 1 and (top) wave 2 at (left) 500, (middle) 100, and (right)

10 hPa. The shaded contours are, from (left) to (right), (0, 6, . . . , 48)3 102, (0, 2, . . . , 14)3 103, and (0, 15, . . . , 105)3 103m2. The colored

line contours are, from (left) to (right),6(7, 21, 35, . . . , 119),6(12, 36, 60, . . . , 156), and6(40, 120, 200, . . . , 640)m. Blues are negative and

reds are positive. The contours are the same for wave 1 and wave 2. The thick purple and green lines show the positions of the zonal

extremes of, respectively, the variance over time of Z*0
St
and the climatological wave Zc*. These lines are only plotted north of 408N.
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Shaw et al. (2010), using a shorter dataset and hence

fewer degrees of freedom, estimate that coherences

above 0.18 are statistically significant at the 99% level.

We only plot coherences of 0.2 or above and are thus

assured that the coherences shown are all significant at

least at the 99% level. Focusing first on the total wave-1

anomalies (Fig. 7d), we see evidence for the well-known

upward propagation of wave 1: for positive 3–6-day lags,

there is a strong (.0.3) coherence between wave am-

plitudes at 10 hPa and the reference point at 500 hPa.

Furthermore, at 0-day and positive lags, the wave 1 has

a westward tilt with height throughout the upper tro-

posphere and stratosphere—further evidence for the

upward propagation of the wave. There is a suggestion

of downward propagation for negative lags in the phase

diagram (eastward phase tilt with height) but no such

indication in the coherence diagram. This is partially due

to using the entire NDJFM period to compute the cor-

relations: as shown in Shaw et al. (2010), wave reflection

has a strong seasonal cycle and peaks in strength in

January–March (JFM). Furthermore, stronger cou-

plings to the stratosphere, both upward and downward,

are seen if ameridional average [e.g., from 458 to 808Nas

in Shaw et al. (2010)] is performed before computing the

correlations. We choose to perform the correlations

based on 608N for easy comparison with results we have

already shown based solely on this latitude (e.g., in

Figs. 1 and 4). Last, we note the clear tendency of

westward propagation of wave 1 throughout the tropo-

sphere, as seen in the steadily decreasing phase with lag

in Fig. 7d. Generally, the same conclusions can be

reached for the total wave-2 signal (Fig. 7a) except that

the time scale for upward propagation is faster (2–3

days) and there is no eastward phase tilt with height at

negative lags.

Now we examine the correlations separately for the

standing and westward-traveling parts of the wave-1 and

wave-2 geopotential height anomalies, which are spe-

cifically given by (for some wavenumber k0)

zStk0 (l, t)5
2

NT
�
T
2

j52T
2

ZSt
k0 , j cos(k

0l1vjt1fk0, j) and

(19)

zTrWk0 (l, t)5
2

NT
�
j51

T
2

ZTr
k0, j cos(k

0l1vjt1fk0, j) . (20)

Here,ZSt
k0,j andZ

Tr
k0 ,j are respectively the wave-k

0 standing
and traveling amplitudes of the geopotential height

FIG. 7. Correlation coherence (contours) and phase (shading) of (a)–(c) wave-2 and (d)–(f) wave-1 geopotential height anomalies

during NDJFMat 608N as a function of pressure and lag with respect to 608N and 500hPa. Correlations are computed using (left) the total

wave anomaly, (middle) only the standing part, and (right) only the westward-traveling part [see Eqs. (19) and (20)]. The coherence is

plotted at intervals of 0.1, starting from 0.2. The phase (8) denotes the longitudinal separation of the two wave crests: positive phasemeans

the distant (away from 0-day lag and 500hPa) wave is eastward of the reference wave.
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anomaly at frequencyvj and fk0,j is the wave-k
0 phase at

frequency vj. Note that in Eq. (20) we sum over only

positive j in order to isolate the westward-traveling

waves.

Examining Fig. 7e, we see that for wave 1 the standing

wave coherence is similar to the total wave coherence,

but with generally smaller coherences throughout. The

correlation phase for the standing wave is analogous to

that for the total wave, but without the westward propa-

gation in the troposphere. In addition, the westward and

eastward phase tilts with height for positive and negative

lags tend to be more extreme for the standing wave as

compared to the total wave. As expected from the defi-

nition of the standing wave, at 500hPa we see essentially

no change in the phase of the wave with time for the lags

shown, although at approximately614 days (not shown)

there is a sharp 1808 jump in phase, which would be in

accordance with a standing wave with a 28-day period.

For wave 2 (Fig. 7b), there is a very close correspondence

between the coherence plots of the standing and wave

and the total wave, and there is no change in phase until

lags of 610 days.

The westward-propagating wave-1 and wave-2

anomalies (Figs. 7c and 7f) are vertically deep signals,

spanning the troposphere and up to the midstrato-

sphere at 0-day lag, with an equivalent barotropic

structure in the troposphere and weak westward phase

tilts with height in the stratosphere. Furthermore, they

have amuch longer coherence time scale (0.2 coherence

up to 613 days at 500 hPa for wave 1) compared to the

total wave in both in the troposphere and in the

stratosphere. The correlation phases show the expected

consistent phase propagation, with a 3608 revolution at

500 hPa beingmade in about 28 days for wave 1, roughly

in accordance with the westward-traveling wave-1

spectral peak seen in the left panel of Fig. 4. These re-

sults agree with the vertical structure of Northern

Hemisphere high-latitude westward-propagating wave-1

features identified by previous authors—for example,

Fig. 11 of Branstator (1987) or Fig. 7 of Madden and

Speth (1989). The eastward-traveling signals (not

shown) are strongly trapped in the troposphere and the

progression of phase is not as consistent as for the

westward-traveling wave.

Note that largely the same conclusions can be reached

by picking a reference point in the stratosphere—for

example, at 608N and 10 hPa (not shown). The standing

wave amplitudes here are preceded by anomalies in the

troposphere about 3–6 days before for wave 1 (less for

wave 2), and the westward-propagating waves fill the

depth of the stratosphere and troposphere with a baro-

tropic structure in the troposphere and a slight westward

tilt with height in the stratosphere. The eastward waves

referenced to the stratosphere do not penetrate into the

troposphere.

4. Summary and discussion

In this studywehave introduced a novel decomposition

of longitude- and time-dependent signals into standing

and traveling components. Unlike previous techniques,

ourmethod explicitly provides the covariance between the

standing and traveling waves and permits reconstruction

of the standing and traveling signals. We apply the de-

composition to geopotential height anomalies in the

Northern Hemisphere winter. Focusing on planetary

waves 1–3, we find that at 608N the standing wave explains

the largest portion of the variance in wave anomalies, es-

pecially at low frequencies. There are exceptions for wave

1 and to a lesser extent wave 2, which have substantial

westward-traveling anomalies in the troposphere with

periods around 25 days. In the stratosphere standingwaves

generally dominate, except for a small peak in the

eastward-traveling wave 2 with a period of about 16 days.

We have also shown that planetary wave-1 and wave-2

standing wave anomalies have preferred longitudinal posi-

tions and that their antinodes generally align with the max-

imumandminimumof the climatologicalwave, especially in

the lower and midstratosphere. This implies that the stand-

ing waves should be an efficient driver of LIN (Smith and

Kushner 2012), which is the vertical flux of Rossby wave

activity that is linearly dependent on the climatological wave

pattern. This point will be examined in more detail in

a subsequent paper. Last, we examined the vertical and

time-lagged structure of the standing and traveling wave-1

and wave-2 signals with respect to 608N and 500hPa. We

found that the standing waves have a similar structure to the

total wavewith a tendency for upward propagation from the

troposphere to the stratospherewith a time scaleof 3–6 (2–3)

days for wave 1 (wave 2). On the other hand, the westward-

traveling wave 1 and wave 2 are deep signals spanning the

troposphere and stratosphere with relatively little phase tilt.

The separation of wave anomalies into standing and

traveling parts is helpful for distinguishing the wave

events that originate in the troposphere and drive

stratospheric variability. Although, as we have shown,

the westward-propagating wave 1 is a strong feature in

the high-latitude troposphere and lower stratosphere;

because of its lack of phase tilt, we do not expect it to

strongly contribute to the vertical flux of wave activity.

On the other hand, we have isolated standing waves and

shown that they have a tendency to strengthen and

weaken the climatological wave. In addition, the phase

tilts and time-lagged coherences of the standing wave

contributions are suggestive of upward propagation, and

one would expect them to be responsible for the upward
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communication of wave activity anomalies from the tro-

posphere to stratosphere. Future work will quantify the

contributions of the standing and traveling waves to wave

activity flux variability over a range of time scales.
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APPENDIX

Spectral Identities and Derivations

a. Inverse Fourier transform of real signal

The inverse 2D discrete Fourier transform is con-

ventionally written as

q(l, t)5
1

NT
�
N21

k51
�
T21

j50

eikl1iv
j
tq̂k, j . (A1)

Noting that q̂k,j 5 q̂N1k,T1j and assuming for conve-

nience that N and T are odd (which is not strictly nec-

essary), one can rewrite Eq. (A1) as

q(l, t)5
1

NT
�
N

2

k52N
2

�
T

2

j52T
2

eikl1iv
j
t q̂k, j , (A2)

whereN25 (N2 1)/2 and T25 (T2 1)/2. Furthermore,

given that q(l, t) is a real-valued function, we have

q̂2k,2j 5 (q̂k,j)
y, where the dagger represents the com-

plex conjugate. Thus, we can keep only half the Fourier

coefficients. Recalling that q(l, t) has zero zonal mean,

we can rewrite Eq. (A2) as

q(l, t)5
1

NT
�
N

2

k51
�
T
2

j52T
2

eikl1iv
j
tq̂k, j

1
1

NT
�
21

k52N
2

�
T
2

j52T
2

eikl1iv
j
tq̂k, j . (A3)

Then, using that

�
21

k52N
2

�
T

2

j52T
2

eikl1iv
j
t q̂k,j 5 �

N
2

k51
�
T
2

j52T
2

e2ikl1iv
j
t q̂2k,j

5 �
N

2

k51
�
T
2

j52T
2

e2ikl2iv
j
t q̂2k,2j

5

 
�
N

2

k51
�
T

2

j52T
2

eikl1iv
j
t q̂k,j

!y
,

(A4)

where the second equality holds because we are sum-

ming over a symmetric (about zero) range of integers j,

we see

q(l, t)5
2

NT
�
N

2

k51
�
T
2

j52T
2

Re(eikl1iv
j
tq̂k,j) . (A5)

Rewriting the Fourier coefficients in terms of their am-

plitudes and complex phases, q̂k,j 5Qk,je
ifk,j , we have

our reformulated inverse 2D discrete Fourier transform:

q(l, t)5
2

NT
�
N

2

k51
�
T
2

j52T
2

Qk,j cos(kl1vjt1fk,j) . (A6)

It is trivial to rewrite this in the form of Eq. (2) given that

q(l, t) as zero time mean.

b. Longitude of standing wave antinodes

Hayashi (1973, 1977) and Pratt (1976) provide a for-

mula for computing the longitudes of the antinodes of the

standing part of a signal in terms of the power spectra and

cross-spectra of ck(t) and sk(t) (note, in this section, that

we follow the notation of Hayashi and Pratt, as outlined

in section 2c). In particular, Hayashi (1973) defines3

a5 tan21

"
2Kv(ck, sk)

Pv(ck)2Pv(sk)

#
(A7)

and shows that the longitudes of the maximum time

variance of the signal are given by

l5
mp1a/2

k
, (A8)

where m is an integer. We showed in section 2a that

the longitudes of the antinodes of the standing wave

at wavenumber k and frequency vj are given by

3Note Eq. (3.3) in Hayashi (1973) is erroneously missing the

tan21. See, for example, Eq. (13) of Pratt (1976) or Eq. (4.3) of

Hayashi (1977).
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l5 (1/k)(mp2fk,j) with fk,j defined in Eq. (8). Thus, to

demonstrate the equivalence between our formula and

Hayashi’s, we must show that a522fk,j.

We begin by rewriting Eq. (7) in the form of Eq. (13).

Note for simplicity we take QSt
k,j 5 1, although the deri-

vation holds generally. Straightforward algebraic ma-

nipulations can be used to show that

qStk,6j(l, t)5 ck(t) coskl1 sk(t) sinkl , (A9)

where

ck(t)5 (cosfk,j 1 cosfk,2j) cosvjt

1 (2sinfk,j 1 sinfk,2j) sinvjt (A10)

and

sk(t)5 (2sinfk, j2 sinfk,2j) cosvjt

1 (2cosfk, j 1 cosfk,2j) sinvjt . (A11)

We now compute the Fourier transforms of ck(t) and

sk(t) in order to be able to compute their power

spectra and cross-spectra. That is, we decompose ck(t)

and sk(t) as

ck(t)5 ĉk,je
iv

j
t 1 ĉk,2je

2iv
j
t and (A12)

sk(t)5 ŝk,je
iv

j
t 1 ŝk,2je

2iv
j
t , (A13)

where

ĉk,j5
1

2
(cosfk,j1 cosfk,2j 1 i sinfk,j 2 i sinfk,2j) ,

(A14)

ŝk,j 5
1

2
(2sinfk,j 2 sinfk,2j 1 i cosfk,j 2 i cosfk,2j) ,

(A15)

and ĉk,2j 5 (ĉk,j)
y and ŝk,2j 5 (ŝk,j)

y. Using these formu-

las, one can show that

Pv(ck)5 jĉk,jj25 cos2
�
fk,j 1fk,2j

2

�
, (A16)

Pv(sk)5 jŝk,jj25 sin2
�
fk,j1fk,2j

2

�
, and (A17)

Kv(ck, sk)5Re(ĉk,jŝk,j)52
1

2
sin(fk,j 1fk,2j) . (A18)

Thus, substituting the above into Eq. (A7) we have that

a5 tan21

8<
:

2sin(fk,j1fk,2j)

cos2[(fk,j1fk,2j)/2]2 sin2[(fk,j1fk,2j)/2]

9=
;

52tan21

2
4 sin(fk,j1fk,2j)

cos(fk,j1fk,2j)

3
5

52(fk,j1f2k,j)522fk, j

(A19)

as required.

c. Variance over time

Here, we show how the variance over time of a single-

wavenumber signal can be rewritten as a sum over the

Fourier coefficients. We consider

qk(l, t)5
2

NT
�
T

2

j52T
2

Qk,j cos(kl1vjt1fk,j) . (A20)

We compute the variance over time of the single-

wavenumber signal (assuming the time mean is zero)—

a quantity that depends on longitude:

var(qk)(l)5
1

T
�
T21

t50

[qk(l, t)]
2

5
4

N2T3 �
T

2

j52T
2

�
T
2

j052T
2

Qk,jQk,j0

3 �
T21

t50

cos(kl1vjt1fk,j)cos(kl1vj0 t1fk,j0),

(A21)

where we have substituted in Eq. (A20) and then

changed the order of summation. Using the orthogo-

nality of the cosine basis functions, one can show

�
T21

t50

cos(kl1vjt1fk,j) cos(kl1vj0 t1fk,j0)

5
T

2
dj,j0 1

T

2
cos(2kl1 2fk,j)dj,2j0

5
T

2
dj,j0 1

T

2
[2 cos2(kl1fk,j)2 1]dj,2j0 . (A22)

Substituting Eq. (A22) into Eq. (A21) we have our final

result for the variance over time of our signal repre-

sented as a sum over the Fourier coefficients:
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var(qk)(l)5
2

N2T2 �
T
2

j52T
2

[Q2
k,j1 2Qk,jQk,2j cos

2(kl1fk,j)2Qk,jQk,2j] . (A23)
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